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A PERTURBATION METHOD FOR MIXED THREE-DIMENSIONAL PROBLEMS OF THE THEORY OF 
ELASTICITY WITH A COMPLEX LINE OF BOUNDARY-CONDITION SEPARATION* 

N.M. BORODACHEV 

A modification of the perturbation method is proposed, based on the 

utilization of variational formulas and enabling asymptotic expansions 

(AE) to be obtained for mixed three-dimensional problems of the theory of 

elasticity with a complex line of boundary-condition separation. Application 

of Lighthill's method enables these expansions to be transformed into 

uniformly suitable ones. The problem for an elastic body with a slit 

(crack) and the contact problem of the theory of elasticity are considered 

separately. For the body with a slit the variational formula determines 

the variation of the displacement of the slit surface caused by variation 

in the shape of the slit contour. The effectiveness of this formula for 

constructing AE in problems associated with a perturbation of the shape 

of the slit contour is shown. Cases of slits of complex shape in an 

infinite body that differ slightly from a circular slit are examined in 

detail. A scheme for constructing similar AEis mentioned for spatial 

contact problems of the theory of elasticity with a complex shape of the 

contact area. 
A review of the application of perturbation methods to mixed problems 

in the theory of elasticity is contained in /l, 2/. The solutions of 
mixed spatial problems in the theory of elasticity with a complex line 

of boundary condition separation, obtained by using other methods, are 

discussed in /3-8/. The behaviour of the solution of the boundary value 

problem for a pseudodifferential equation (in particular, crack theory) 
for variation of the domain was investigated in /9/. 

1. We consider a linearly elastic body occupying a simply-connected volume V. Let 0 
be the surface bounding this volume. There is a plane slit of surface S in the body. A 

kinematic boundary condition is given on the part 0, of the body surface and a static con- 

dition on its other part 0,. The boundary contour of the slit r is a plane curve. We use 

a rectangular system of coordinates zl,zg, ~a). The slit is in the plane 'z* = 0. We associate 

the positive orientation SC of the surface S with the limit value xs = o+ and the negative 

orientation S- with z8 = O-. The slit surfaces S+ and S- are contained in 0,. i.e., a static 

boundary condition is given on the slit surface. 

Let us magnify the size of the slit by displacing the contour r in a nearby location rr. 

At each point MEW we direct the variation an(M) along the outer normal to the curve r. 
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The system potential energy @ in this case is a functional over u and I', i.e., @ = @(u, % 
where u is the displacement vector. Variation of the slit contour 6n will cause a variation 
of the functional Qt which we will denote by 8,,@. It can be shown that 

S,@ = 0 (1.i) 
We will confine ourselves to considering the normal separation case. Then, written in 

detail, the stationarity condition (1.1) takes the form 

~X,P(M)6n(M)ds=--~~o,(Q)~,U,(Q)dS (1.2) 

a = 2p/(n (1 - y)), M E r, 0 ES+ 

where p is the shear modulus, Y is Poisson's ratio and K,:isthestressfntensity factor of 
normal separation. It is assumed here that the load is applied only to the slit surfaces SC 
and S-. Identical normal stresses 033(Q) and tangential stresses o13(Q) = a33(Q) = 0 are given 
on both surfaces S' and S. 

We will examine two states of equilibrium of this body with a slit, later called first 
and second. In the first state, unit concentrated forces s33@)(Q)= -8(Q,Q3), are applied to 
the surfaces s' and s-, and a certain pressure p(Q) in the second state, i.e., ,033~~)(Q)= -p(Q). 

Here 6 (Q, 91) is a delta function. Moreover, we consider the total state for which 

033 (Q) = a33c1)(Q) 4 s3aC3'(Q) 

Applying (1.2) to these states and using the theorem on reciprocity of work /lo/, we 
obtain 

6,#(Q)=a-l\ Kt'(M;Q) K~“(M)Gn(M)ds 
? 

Here &fl) corresponds to a,,(l) while g1(3) and us@) correspond to a33f'). Formula 
(1.3) expresses the variation of the displacement of the slit surface S+ caused by variation 
of the slit contour. It is assumed here that a pressure p(Q) is given on the slit surfaces. 

We will examine a special case of (1.3). Let I? be a circle of radius a described around 
the origin. By using a cylindrical coordinate system r, 8, z (1.3) takes the form 

(1.4) 

where (p is the polar angle corresponding to the point M. Furthermore, let the slit be in an 
infinite body. Then we have for a plane circular slit /ll/ 

Substituting this expression into (1.4) and discarding the superscripts indicating the 
number of the state, we finally obtain 

Formula (1.5) enables us to determine the variation of the displacement of the plane slit 
surface S+ in an infinite elastic body during passage of the slit contour I? (r is a circle 
of radius a) into a nearby location f,. Variation of the slit contour is determined by the 
quantity 6n(r& It is assumed that an arbitrary normal load a,(r,e) = -~(r,@) 
to the slit surfaces, for which the stress intensity 

is applied 
factor is K,(m), which is determined 

for thecontour r. 
The variational formulas (1.3)-(1.5) obtained can be used when solving different problems 

for bodies with a slit. In particular, these formulas turned out to be effective in con- 
structing the AE in problems associated with a perturbation in the shape of the slit contour. 

2. Let there be a plane slit of complex shape in an infinite elastic body. The boundary 
contour of the slit ri differs slightly from a circle of radius a (the contour r) and its 
equation in polar coordinates has the form 

p = (I [i + sf (cp)l, e < 1 t2.0 

where f(q) is a certain piecewise-continuous function. Therefore, just a small perturbation 
of the contour of a circular slit is considered. We shall seek the solution of the perturbed 
problem in the form of an AE in the small parameter 8 

a, (P, et = +I (r, (3) + su,1 (rt ft) + 0 (8 (2.2) 
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Here UzO (r, 6) is the solution of the unperturbed problem (for a circular slit). The 
displacement &,(r,e) can be found by using the method proposed in /12/. 

To find the small correction sf&, to the quantity u,,, it is possible to use (1.5). It 
follows from (2.1) that 

&n (9) = Eaf (cph E<l (2.3) 
Since &u, = seer, then by using (1.5) and (2.3) we will have 

where K,,,(q) is calculated from the pressure p(r,8) applied to the circular slit surface. 
The Poisson integral U(r,e) yields a harmonic function within the circle r<a for an 

arbitrary piecewise-continuous function K,,(v) f(q). The function .?.J(r,e) is bounded for 
r<-a and continuously joins the boundary values at the points of continuity of the function 

lu,, (cp) f (cp). Ordinarily Go (cp) is a continuous function and therefore, f (cp) can be a piece- 
wise-continuous function. Using the properties of the Poisson integral , a number of estimates 
can be obtained for the function U (r,(j) and, therefore, also for u,,(r,O). 

Therefore, a formal AE (2.2) is constructed. Let us analyse it. 
As r+a - 0 the function uzO (r,e) behaves as JII((a - r)x) while the function &I (r, 0) 

behaves as o((a-r)%). The assumption of the smallness of the perturbation is violated near 
the critical point r = a, where the solution obtained is not uniformly suitable. RY applying 
Lighthill's method, the uniform suitability of the AE (2.2) can be restored. 
the easily modified version of this method proposed in /13/. 

We shall use 

3. We will examine specific examples of constructing uniformly suitable 
Let a uniform pressure, i.e., 

p (r, e) = p = 00nst 

be applied to the slit surfaces. 
As is well-known /ll/, in this case 

2po'/" 
Km(cp)=--;t-7 us0 (r, 0) = 2 ('-$P (aa__rr)'/* 

Substituting (3.2) into (2.2) and (2.4) we obtain 

24, (r, e) = 2 (In; ‘) p 
C 

(a’ - raPa + E a ] + 0 (e*) 

AE. 

(3.0 

(3.2) 

(3.3) 

en 
I' 

F(r,e)=x s 
f (cp) (a* - 3 dm 

a* + r’- 2ar COU(~ - e) o 

The perturbed displacement determined by (3.3) has a singularity as r-+a. Therefore 
this solution is not uniformly suitable near the critical point r = a. 

The source of the inhomogeneity can be eliminated by using Lighthill's method. We replace 
r by a slightly deformed coordinate rO. We set 

r = r. + EY (ro, e) (3.4) 
and we substitute it into the first formula in (3.3). The first-order approximation will 
obviously have a singularity of the same order as the zero-th approximation if Y (ro, e) = roF 
(rot 0). Then the expression in the square brackets in (3.3) equals 

[i + EF (r,,, @I (12’ - ‘a’)“’ 

Returing to the variable r, we finally obtain the uniformly suitable expansion 

Uz (r, ej = 2 (I; ‘) p (11 + 2eF (r, e)] aa - rZ)‘/* + 0 (el) (3.5) 

Formula (3.5) determines the displacement of the slit surface s+ whose boundary contour 
pr is given by (2.1). A plane slit exists in an infinite elastic body; a uniform pressure p 
is applied to the slit surfaces. The function F(r,O) in (3.5) and which depends on the 
shape of the slit contour rl can be found by means of (3.3). 

To verify (3.5) we will examine the standard problem for which an exact solution is known. 
Let thecontour I', be an ellipse with semi-axes (1 + a),= and a. In this case (2.1) remains 
valid if f(m) = cos* cp. Substituting this expression into (3.3) we find 

F (r, e) = (a' + P COS 2e)/(za') (3.6) 



Going over to rectangular coordinates in (3.5) we obtain 
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The same result is obtained from the known exact solution /ll/. 
We will now examine the more complex problem for which an exact solution is unknown. 

Let the slit boundary contour be given by (2.1) in which 

I (cp) = 1 + cos ncp (3.7) 

n is an even positive number (the slit contour under consideration is shown for n = 4 for 
the first quadrant in the sketch since it is symmetrical about the zr and za axes). 

Substituting (3.7,) intothe secondformula of (3.3) and integrating, we find 

F (r, 0) = 1 + (rl~)~ co9 ncp (3.8) 
Therefore (3.5) and (3.8) determine the displacement of the slit surface S+ when its 

boundary contour is given by (2.1) and (3.7) and a uniform pressure is applied to the slit 
surfaces. 

The expression for the stress intensity factor is of 
the greatest practical interest. To obtain this expression 
it is first necessary to find the asymptotic representation 
for u, near the boundary contour of the slit. The coordi- 
nates r, 0 ofthepoint Ml located near the slit boundary 
on the inner normal to the slit contour at the point M 
(sketch) with coordinates p,cp are needed here. It can 
be shown that 

tg$ = (1 + 2en sin ncplsin 29) tg cp + 0 (8’) (3.9) 

r=(p -rJ+O(eS), ~=cp+emi1r,sinncpfO(e8), 

r, * 0 

0 a 

Here rr is the spacing between the points M and;Mr.Using (3.5), (3.8) and (3.9), we 
find the asymptotic representation for the displacement and the stress intensity factor 

l& z 2(1 - Y) Pa”l (Xp))-’ {i + ‘/*e ii + (1 - n) co8 ncp] + 
0 (e”)) (2r,P, F, --f 0 

KI = 2n%‘11 (1 + ‘/,e [1 + (1 - n) cos ncpl) + 0 (e”) 

(3.10) 

(3.11) 

It follows from (3.11) for the slit contour shown in the sketch, i.e., for n = 4, that 
in the first quadrant (sketch) K, attains the greatest value for cp = nl4, and the least for 
fp=o and cp = n/2. 

In the general case, it is seen from (3.11) that the greatest value of Kl is directly 
proportional to (1 + ‘/*en). Therefore, KImax grows as the curvature of the slit boundary 
contour increases. However, the number n in (3.11) cannot be very large; its magnitude is 
constrained by the requirement that the correction ‘/*en be small compared with one. 

4. We will now consider the case when concentrated forces are applied to the slit 
surfaces. Let 

(4.1) 

where 6(r) is the delta function. In this case 

&O&J)= (4.2) 

cm the basis of (2.2), (2.4) and (4.2) we have 

u, (r, e) = ’ (i< ‘) 
[ 

F v. 8) + arccos f + e (o, _ r3,,, + ow] (4.3) 

where P(r,O) is determined by the second formula in (3.3). The solution (4.3) is not 
uniformly suitable. Consequently, we again use the change of variables (3.4) and Lighthill's 
method. We consequently find 
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r = r. [I + EF (ro, e)l (4.4) 

u,(r, O)=w arccos [I + &, tl)\ !A + (1 w 

The last expression is uniformly suitable. The singularity at r = 0 in the formula for 

uz is caused by the nature of the load applied to the slit surfaces. As r-+0 the second 

formula in (4.4) yields a result corresponding to the action of a concentrated force on the 

boundary of an elastic half-space. 

Formula (4.4) for u, is applicable to a plane slit whose boundary contour r1 is given 

by (2.1). 
As an illustration, let us consider the case when the boundary contour of the slit is an 

ellipse with the semi-axes (if e) a and a. For such a slit the function F(r.8) is determined 

by (3.6). 

To determine the displacement I+ near the boundary of the elliptical slit, we will 

change from the coordinates ~1, Q,Q to the coordinates rl, Sj, 9 /14/. For fI1 = n we have 

2, = COS$ (a, - a,r,rl,) (4.5) 
5% = sin* (a2 - a,r,U,) 

II, ='(al% sin% $ + aa cw? $I)-“’ 

(9 is the parametric angle of the ellipse). In the case under consideration 

a, = (1 + E) 0, al = a 

sin 9 = sin cp (1 + e cosp q) + 0 (e*) 

where cp is the polar angle in (2.1). Using (4.4), (3.6) and (4.5) we find 

P(l--v) -- uz - @la*/ 
[I + + (sin* I$ - 4cos*$)+ 0 (aa)1 (2rl)'/', Q-I 0 

Kl(Q)= & [ 1 -+ (3 + 5coa2$) 
I 
+- 0 (P') 

As the examples examined above show, (2.2) and (2.4) permit a fairly simple construction 
of AE for the displacement of a slit surface of complex shape in an infinite body when 

distributed loads or concentrated forces are applied to the slit surfaces. Using Lighthill's 

method, this AE can be made uniformly suitable and a formula can be obtained to evaluate the 

stress intensity factor. 

5. we will examine the spatial contact problem of the theory of elasticity. Let a 

linearly elastic body occupy the simply-connected volume V. The surface 0 bounding this 

volume consists of a certain surface 0, and the plane surface 0, whose equation is x3 = 0. A 

rigid cylindrical stamp of arbitrary cross-section is impressed into the plane surface of the 

body 0,. The stamp base has the shape of a convex surface. The plane surface 0,is partitioned 

into two parts, the contact area OS and the surface 0, (0, is considered stress free). A 
static boundary condition is given on 0,. 

In this case the contour of the contact area r together with the stress tensor are 

inserted into a number of independent elements characterizing the state of the elastic body. 

The equation /15/ 

(5.1) 

MEW, QEO, 

is obtained from the variation of the contact area contour by using the functional of the 
principle of the minimum of additional work, where K, is the compressive stress intensity 
factor, 6n isthe variation of the contact area contour, and 6,0,, is the variation of the 
stress (rag on the contact area caused by the variation 6n. 

Formula (5.1) plays the same role for the spatial contact problem of the theory of 
elasticity as does (1.2) for a body with a slit. Consequently, further solution of the 
contact problem with a complex shape of the contact area can be carried out by the same scheme 
as for the problem with a complex shape of a plane slit. 
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THE NON-LINEAR DYNAMICS OF ELASTIC RODS* 

V.V. ELISEYEV 

The general equations of non-linear dynamics of elastic rods are examined 
taking tension, transverse shear, eccentricity, rotational inertia, and 
also initial stresses into account. A second-order theory is constructed 
for Timoshenko and classical-type models. A variational formulation is 
given forthdlinearised problem. Tension and shear effects are examined 
in the problem of the stability of a compressed column. 

1. Geometry and kinematics. A rod is considered below to be a deformable material 
line whose particles are solids /l/. A Lagrange coordinate s, O<s< 1 is introduced. This 
usually an arc coordinate in a reference configuration. The rod motion is determined by the 
time dependence of the radius-vector r(a,t) and the rotation tensor p (s, t) for each particle. 
Internal interactions are given by the force vector Q(s,t) and moment vector M (s, 1) with 
which a particle with coordinate s+o acts on a neighbour s- 0 (Q and IM change when 
the reference direction s is reversed). 

To assign an angular orientation, an orthogonal triple eh. is associated with eachparticle 
according to a certain rule; it is often assumed, say, that e,, = r,,' ((...)I = a/&; the zero 
subscript marks quantities in the reference configuration). By the,definition of the ro- 
tation tensor eL = P.ema. P = eLerO. Here and henceforth, the language of the direct tensor 
calculus is used /2/. The curvature vector and rod twist are introduced by the relationships 
eb' = 0 X ek, hl ='lrek X ek' As will be shown below, the vectors 
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